Selamat Datang Di Blog MAKALAH DAN SKRIPSI
Terima kasih atas kunjungan Anda di blog MAKALAH DAN SKRIPSI,
disini Anda dapat mencari bahan tugas hukum, ekonomi, Pendidikan, Pertanian, Sosial dan Politik. Contoh untuk hukum: makalah etika profesi dan penegakkan hukum, hukum agraria, pidana khusus, filsafat hukum, antropologi hukum, proposal penelitian hukum dan lain-lain.

Makalah: PEMBELAJARAN MATEMATIKA REALISTIK (RME)

BAB I
PENDAHULUAN

1.1 Latar Belakang
Matematika adalah salah satu ilmu dasar, yang semakin dirasakan interkasinya dengan bidang-bidang ilmu lainnya seperti ekonomi dan teknologi. Peran matematika dalam interaksi ini terletak pada struktur ilmu dan perlatan yang digunakan. Ilmu matematika sekarang ini masih banyak digunakan dalam berbagai bidang seperti bidang industri, asuransi, ekonomi, pertanian, dan di banyak bidang sosial maupun teknik. Mengingat peranan matematika yang semakin besar dalam tahun-tahun mendatang, tentunya banyak sarjana matematika yang sangat dibutuhkan yang sangat terampil, andal, kompeten, dan berwawasan luas, baik di dalam disiplin ilmunya sendiri maupun dalam disiplin ilmu lainnya yang saling menunjang. Untuk menjadi sarjana matematika tidaklah mudah, harus benar-benar serius dalam belajar, selain harus belajar matematika, kita juga harus mempelajari bidang-bidang ilmu lainnya. Sehingga, jika sudah menjadi sarjana matematika yang dalam segala bidang bisa maka sangat mudah untuk mencari pekerjaan.

Kata matematika berasal dari kata “mathema” dalam bahasa Yunani yang diartikan sebagai “sains, ilmu pengetahuan atau belajar.” Disiplin utama dalam matematika di dasarkan pada kebutuhan perhitungan dalam perdagangan, pengukuran tanah, dan memprediksi peristiwa dalam astronomi. Ketiga kebutuhan ini secara umum berkaitan dengan ketiga pembagian umum bidang matematika yaitu studi tentang struktur, ruang, dan perubahan. Pelajaran tentang struktur yang sangat umum dimulai dalam bilangan natural dan bilangan bulat, serta operasi aritmatikanya, yang semuanya dijabarkan dalam aljabar dasar. Sifat bilangan bulat yang lebih mendalam dipelajari dalam teori bilangan. Ilmu tentang ruang berawal dari geometri. Dan pengertian dari perubahan pada kuantitas yang dapat dihitung adalah suatu hal yang biasa dalam ilmu alam dan kalkulus.

Dalam perdagangan sangat berkaitan erat dengan matematika karena dalam perdagangan pasti akan ada perhitungan, di mana perhitungan tersebut bagian dari matematika. Secara tidak sadar ternyata semua orang menggunakan matematika dalam kehidupan sehari-hari seperti jika ada orang yang sedang membangun rumah maka pasti orang tersebut akan mengukur dalam menyelesaikan pekerjaannya itu. Oleh karena itu matematika sangat bermanfaat sekali dalam kehidupan sehari-hari.

Salah satu karakteristik matematika adalah mempunyai objek yang bersifat abstrak ini dapat menyebabkan banyak siswa mengalami kesulitan dalam matematika. Prestasi matematika siswa baik secara nasional maupun internasional belum menggembirakan. Dalam pembelajaran matematika siswa belum bermakna, sehingga pengertian siswa tentang konsep sangat lemah.

“Menurut Jenning dan Dunne (1999) mengatakan bahwa, kebanyakan siswa mengalami kesulitan dalam mengaplikasikan matematika ke dalam situasi kehidupan real.” Hal ini yang menyebabkan sulitnya matematika bagi siswa adalah karena dalam pembelajaran matematika kurang bermakna, dan guru dalam pembelajarannya di kelas tidak mengaitkan dengan skema yang telah dimiliki oleh siswa dan siswa kurang diberikan kesempatan untuk menemukan kembali ide-ide matematika. Mengaitkan pengalaman kehidupan nyata, anak dengan ide-ide matematika dalam pembelajaran di kelas sangat penting dilakukan agar pembelajaran matematika bermakna.

Menurut Van de Henvel-Panhuizen (2000), bila anak belajar matematika terpisah dari pengalaman mereka sehari-hari, maka anak akan cepat lupa dan tidak dapat mengaplikasikan matematika. Salah satu pembelajaran matematika yang berorientasi pada matematisasi pengalaman sehari-hari dan menerapkan matematika dalam kehidupan sehari-hari adalah pembelajaran matematika realistik.

Pembelajaran matematika relaistik pertama kali diperkenalkan dan dikembangkan di Belanda pada tahun 1970 oleh Institut Freudenthal. Pembelajaran matematika harus dekat dengan anak dan kehidupan nyata sehari-hari.

Biasanya ada sebagian siswa yang menganggap belajar matematika harus dengan berjuang mati-matian dengan kata lain harus belajar dengan ekstra keras. Hal ini menjadikan matematika seperti “monster” yang mesti ditakuti dan malas untuk mempelajari matematika. Apalagi dengan dijadikannya matematika sebagai salah satu diantara mata pelajaran yang diujikan dalam ujian nasional yang merupakan syarat bagi kelulusan siswa-siswi SMP maupun SMA, ketakutan siswa pun makin bertambah. Akibat dari pemikiran negatif terhadap matematika, perlu kiranya seorang guru yang mengajar matematika melakukan upaya yang dapat membuat proses belajar mengajar bermakna dan menyenangkan. Ada beberapa pemikiran untuk mengurangi ketakutan siswa terhadap matematika.

Salah satunya dengan cara pembelajaran matematika realistik dimana pembelajaran ini mengaitkan dan melibatkan lingkungan sekitar, pengalaman nyata yang pernah dialami siswa dalam kehidupan sehari-hari, serta menjadikan matematika sebagai aktivitas siswa. Dengan pendekatan RME tersebut, siswa tidak harus dibawa ke dunia nyata, tetapi berhubungan dengan masalah situasi nyata yang ada dalam pikiran siswa. Jadi siswa diajak berfikir bagaimana menyelesaikan masalah yang mungkin atau sering dialami siswa dalam kesehariannya.

Pembelajaran sekarang ini selalu dilaksanakan di dalam kelas, dimana siswa kurang bebas bergerak, cobalah untuk memvariasikan strategi pembelajaran yang berhubungan dengan kehidupan dan lingkungan sekitar sekolah secara langsung, sekaligus mempergunakannya sebagai sumber belajar. Banyak hal yang bisa kita jadikan sumber belajar matematika, yang penting pilihlah topik yang sesuai misalnya mengukur tinggi pohon, mengukur lebar pohon dan lain sebagainya.

Siswa lebih baik mempelajari sedikit materi sampai siswa memahami, mengerti materi tersebut dari pada banyak materi tetapi siswa tidak mengerti tersebut. Meski banyak tuntutan pencapaian terhadap kurikulum sampai daya serap namun dengan alokasi yang terbatas. Jadi guru harus memberanikan diri menuntaskan siswa dalam belajar sebelum ke materi selanjutnya karena hal ini dimaksudkan agar tidak terjadi kesalahpahaman siswa dalam belajar matematika.
Kebanyakan siswa, belajar matematika merupakan beban berat dan membosankan, jadinya siswa kurang termotivasi, cepat bosan dan lelah. Adapun beberapa cara yang dapat dilakukan untuk mengatasi hal di atas dengan melakukan inovasi pembelajaran. Beberapa cara yang dapat dilakukan antara lain memberikan kuis atau teka-teki yang harus ditebak baik secara berkelompok ataupun individu, memberikan permainan di kelas suatu bilangan dan sebagainya tergantung kreativitas guru. Jadi untuk mempermudah siswa dalam pembelajaran matematika harus dihubungkan dengan kehidupan nyata yang terjadi di dalam kehidupan sehari-hari.

1.2 Tujuan Penulisan
Suatu pembelajaran matematika tidaklah sulit, ada cara untuk mempermudah dalam belajar matematika yaitu dengan cara Pembelajaran Matematika Realistik. Dimana pembelajaran ini menghubungkan dengan kehidupan sehari-hari. Dalam penulisan makalah ini bertujuan:
1. Untuk mempermudah siswa dalam belajar matematika dapat menggunakan dalam pembelajaran matematika realistik.
2. Guru dalam menyampaikan materi harus mempunyai strategi dalam pembelajaran matematika, supaya siswa tidak bosan dalam pembelajaran matematika.
3. Supaya siswa mengetahui betapa menyenangkan mempelajari matematika.
4. Untuk mengetahui lebih jelas lagi tentang pembelajaran matematika realistik.
5. Untuk memaparkan secara teori pembelajaran matematika realistik.
6. Untuk pengimplementasian pembelajaran matematika realistik.
7. Kaitan antara pembelajaran matematika realistik dengan pengertian.

1.3 Pertanyaan Penulisan
1. Apa yang dimaksud dengan pembelajaran matematika realistik?
2. Bagaimana cara strategi seorang guru dalam pembelajaran matematika supaya siswa menyukai pembelajaran matematika?
3. Kenapa matematika tidak disukai oleh siswa?
4. Karakteristik apa saja yang ada dalam RME?
5. Mengapa siswa selalu lupa dengan konsep yang telah dipelajari?

BAB II
PEMBAHASAN

2.1 Matematika Realistik (MR)
Matematika realistik yang dimaksudkan dalam hal ini adalah matematika sekolah yang dilaksanakan dengan menemaptkan realitas dan pengalaman siswa sebagai titik awal pembelajaran. Masalah-masalah realistik digunakan sebagai sumber munculnya konsep-konsep matematika atau pengetahuan matematika formal. Pembelajaran matematika realistik di kelas berorientasi pada karakteristik RME, sehingga siswa mempunyai kesempatan untuk menemukan kembali konsep-konsep matematika. Dan siswa diberi kesempatan untuk mengaplikasikan konsep-konsep matematika untuk memecahkan masalah sehari-hari. Karakteristik RME menggunakan: konteks “dunia nyata”, model-model, produksi dan kontruksi siswa, interaktif dan keterkaitan. (Trevers, 1991; Van Heuvel-Panhuizen, 1998). Di sini akan mencoba menjelaskan tentang karakteristik RME.
a. Menggunakan konteks “dunia nyata” yang tidak hanya sebagai sumber matematisasi tetapi juga sebagai tempat untuk mengaplikasikan kembali matematika. Pembelajaran matematika realistik diawali dengan masalah-masalah yang nyata, sehingga siswa dapat menggunakan pengalaman sebelumnya secara langsung. Proses pencarian (inti) dari proses yang sesuai dari situasi nyata yang dinyatakan oleh De Lange (1987) sebagai matematisasi konseptual. Dengan pembelajaran matematika realistik siswa dapat mengembangkan konsep yang lebih komplit. Kemudian siswa juga dapat mengaplikasikan konep-konsep matematika ke bidang baru dan dunia nyata. Oleh karena itu untuk membatasi konsep-konsep matematika dengan pengalaman sehari-hari perlu diperhatikan matematisasi pengalaman sehari-hari dan penerapan matematika dalam sehari-hari.

b. Menggunakan model-model (matematisasi) istilah model ini berkaitan dengan model situasi dan model matematika yang dikembangkan oleh siswa sendiri. Dan berperan sebagai jembatan bagi siswa dari situasi real ke situasi abstrak atau dari matematika informal ke matematika formal. Artinya siswa membuat model sendiri dalam menyelesaikan masalah. Model situasi merupakan model yang dekat dengan dunia nyata siswa. Generalisasi dan formalisasi model tersebut. Melalui penalaran matematika model-of akan bergeser menjadi model-for masalah yang sejenis. Pada akhirnya akan menjadi model matematika formal.

c. Menggunakan produksi dan konstruksi streefland (1991) menekankan bahwa dengan pembuatan “produksi bebas” siswa terdorong untuk melakukan refleksi pada bagian yang mereka anggap penting dalam proses belajar. Strategi-strategi formal siswa yang berupa prosedur pemecahan masalah konstekstual merupakan sumber inspirasi dalam pengembangan pembelajaran lebih lanjut yaitu untuk mengkonstruksi pengetahuan matematika formal.

d. Menggunakan interaktif. Interaktif antara siswa dengan guru merupakan hal yang mendasar dalam pembelajaran matematika realistik. Bentuk-bentuk interaktif antara siswa dengan guru biasanya berupa negoisasi, penjelasan, pembenaran, setuju, tidak setuju, pertanyaan, digunakan untuk mencapai bentuk formal dari bentuk-bentuk informal siswa.

e. Menggunakan keterkaitan dalam pembelajaran matematika realistik. Dalam pembelajaran ada keterkaitan dengan bidang yang lain, jadi kita harus memperhatikan juga bidang-bidang yang lainnya karena akan berpengaruh pada pemecahan masalah. Dalam mengaplikasikan matematika biasanya diperlukan pengetahuan yang kompleks, dan tidak hanya aritmatika, aljabar, atau geometri tetapi juga bidang lain.

2.2 Pembelajaran Matematika Realistik
Pembelajaran matematika realistik merupakan teori belajar mengajar dalam pendidikan matematika. Teori pembelajaran matematika realistik pertama kali diperkenalkan dan dikembangkan di Belanda pada tahun 1970 oleh Institut Freudenthal. Freudenthal berpendapat bahwa matematika harus diartikan dengan realita dan matematika merupakan aktivitas manusia. Dari pendapat Freudenthal memang benar alangkah baiknya dalam pembelajaran matematika harus ada hubungannya dengan kenyataan dan kehidupan sehari-hari. Oleh karena itu manusia harus diberi kesempatan untuk menemukan ide dan konsep matematika dengan bimbingan orang dewasa. Matematika harus dekat dengan anak dan kehidupan sehari-hari. Upaya ini dilihat dari berbagai situasi dan persoalan-persoalan “realistik”. Realistik ini dimaksudkan tidak mengacu pada realitas pada realitias tetapi pada sesuatu yang dapat dibayangkan.

Adapun menurut pandangan konstruktifis pembelajaran matematika adalah memberikan kesempatan kepada siswa untuk mengkonstruksi konsep-konsep matematika dengan kemampuan sendiri melalui proses internalisasi. Guru dalam hal ini berperan sebagai fasilitator. Dalam pembelajaran matematika guru memang harus memberikan kesempatan kepada siswa untuk menemukan sendiri konsep-konsep matematika dengan kemampuan siswa sendiri dan guru terus memantau atau mengarahkan siswa dalam pembelajaran walaupun siswa sendiri yang akan menemukan konsep-konsep matematika, setidaknya guru harus terus mendampingi siswa dalam pembelajaran matematika.

Menurut Davis (1996), pandangan konstruktivis dalam pembelajaran matematika berorientasi pada:
1. Pengetahuan dibangun dalam pikiran melalui proses asimilasi atau akomodasi.
2. Dalam pengerjaan matematika, setiap langkah siswa dihadapkan kepada apa.
3. Informasi baru harus dikaitkan dengan pengalamannya tentang dunia melalui suatu kerangka logis yang mentransformasikan, mengorganisasikan, dan menginterpretasikan pengalamannya.
4. Pusat pembelajaran adalah bagaimana siswa berpikir, bukan apa yang mereka katakan atau tulis.

Pendapat Davis tersebut, dalam pembelajaran matematika siswa mempunyai pengetahuan dalam berpikir melalui proses akomodasi dan siswa juga harus dapat menyelesaikan masalah yang akan dihadapinya. Siswa mengetahui informasi baru dikaitkan dengan pengalaman sehari-hari secara logis, dalam pembelajaran ini harus bisa memahami dan berpikir sendiri dalam menyelesaikan masalah tersebut, jadi tidak tergantung kepada guru, siswa juga dapat mempunyai cara tersendiri untuk menyelesaikan masalah.

Konstruktivis ini dikritik oleh Vygotsky, yang menyatakan bahwa siswa dalam mengkonstruksi suatu konsep perlu memperhatikan lingkungan sosial. Konstruktivisme ini oleh Vygotsky disebut konstruktisme sosial (Taylor, 1993; Wilson, Teslow dan Taylor, 1993; Atwel, Bleicher dan Cooper, 1998). Ada dua konsep penting dalam teori Vygotsky (Slavin, 1997), yaitu Zone of Proximal Development (ZPD) dan scaffolding. Zone of Proximal Development (ZPD) merupakan jarak antara tingkat perkembangan sesungguhnya yang didefinisikan sebagai kemampuan pemecahan masalah secara mandiri dan tingkat perkembangan potensial yang didefinisikan sebagai kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau melalui kerja sama dengan teman sejawat yang lebih mampu. Scraffolding merupakan pemberian sejumlah bantuan kepada siswa selama tahap-tahap awal pembelajaran, kemudian mengurangi bantuan dan memberi kesempatan untuk mengambil alih tanggung jawab yang semakin besar setelah ia dapat melakukannya (Slavin, 1997). Jadi Zone of Proximal Development ini ada siswa yang menyelesaikan masalah secara sendiri, dan ada siswa yang menyelesaikan masalah harus dengan persetujuan orang dewasa. Sedangkan scraffolding mempunyai tahap-tahap pembelajaran, dalam pembelajaran awal siswa dibantu, tapi bantuan itu sedikit demi sedikit dikurangi. Setelah itu siswa diberikan kesempatan untuk menyelesaikan masalah sendiri dan mempunyai tanggung jawab yang semakin besar setelah siswa dapat melakukannya. Scraffolding merupakan bantuan yang diberikan kepada siswa untuk belajar memecahkan masalah. Bantuan tersebut dapat berupa petunjuk, dorongan, peringatan, menguraikan masalah ke dalam langkah-langkah pemecahan, memberikan contoh, dan tindakan-tindakan lain yang memungkinkan siswa itu belajar mandiri.

Prinsip penemuan dapat diinspirasikan oleh prosedur-prosedur pemcahan informal, sedangkan proses penemuan kembali menggunakan konsep matematisasi. Ada dua jenis matematisasi diformlasikan oleh Treffers (1991), yaitu matematisasi horizontal dan vertikal. Contoh matematisasi horizontal adalah pengidentifikasian, perumusan, dan penvisualisasian masalah dalam cara-cara yang berbeda dan pentransformasian masalah dunia real ke dunia matematika. Contoh matematisasi vertikal adalah representasi hubungan-hubungan dalam rumus, perbaikan dan penyelesaian model matematika, penggunaan model-model yang berbeda dan penggeneralisasian. Kedua jenis ini mendapat perhatian seimbang, karena kedua matematisasi ini mempunyai nilai yang sama. Berdasarkan matematisasi horizontal dan vertikal, pendekatan dalam pendidikan matematika dibedakan menjadi empat jenis yaitu mekanistik, empiristik, strukturalistik, dan realistik.

Pendekatan mekanistik adala pendekatan secara tradisional dan didasarkan pada apa yang diketahui dan pengalaman sendiri. Pendekatan empiristik adalah suatu pendekatan dimana konsep-konsep matematika tidak diajarkan dan siswa diharapkan dapat menemukan sendiri melalui matematisasi horizontal, pendekatan strukturalistik adalah suatu pendekatan yang menggunakan sistem formal, misalnya dalam pengajaran penjumlahan secara panjang perlu didahului dengan nilai tempat, sehingga suatu konsep dicapai melalui matematisasi vertikal. Pendekatan realistik adalah suatu pendekatan yang menggunakan masalah realistik sebagai pangkal tolak pembelajaran. Melalui aktivitas matematisasi horizontal dan vertilal diharapkan siswa dapat menemukan konsep-konsep matematika.

Filsafat konstruktivis sosial memandang kebenaran matematika tidak bersifat absolut dan mengidentifikasi matematika sebagai hasil dari pemecahan masalah dan pengajuan masalah oleh manusia (Ernest, 1991). Dalam pembelajaran matematika, Cobb, Yackel dan Wood (1992) menyebutnya dengan konstruktivisme sosio. Siswa berinteraksi dengan guru, dan berdasarkan pada pengalaman informal siswa mengembangkan strategi-strategi untuk merespon masalah yang diberikan. Karakteristik pendekatan konstrutivis sosio ini sangat sesuai dengan karakteristik RME. Konsep ZPD dan Scraffolding dalam pendekatan konstruktivis sosio, di dalam pembelajaran matematika realistik disebut dengan penemuan kembali terbimbing. Menurut Graevenmeijer (1994) walaupun kedua pendekatan ini mempunyai kesamaan tetapi kedua pendekatan ini dikembangkan secara terpisah. Perbedaan keduanya adalah pendekatan konstruktivis sosio merupakan pendekatan pembelajaran yang bersifat umum, sedangkan pembelajaran matematika realistik merupakan pendekatan khusus yaitu hanya dalam pembelajaran matematika.

2.3 Implementasi pembelajaran Matematika Realistik
Untuk memberikan gambaran tentang implementasi pembelajaran matematika realistik, misalnya diberikan contoh tentang pembelajaran pecahan di sekolah dasar (SD). Sebelum mengenalkan pecahan kepada siswa sebaiknya pembelajaran pecahan dapat diawali dengan pembagian menjadi bilangan yang sama misalnya pembagian kue, supaya siswa memahami pembagian dalam bentuk yang sederhana dan yang terjadi dalam kehidupan sehari-hari. Sehingga siswa benar-benar memahami pembagian setelah siswa memahami pembagian menjadi bagian yang sama, baru diperkenalkan istilah pecahan. Pembelajaran ini sangat berbeda dengan pembelajaran bukan matematika realistik dimana siswa sejak awal dicekoki dengan istilah pecahan dan beberapa jenis pecahan.

Pembelajaran matematika realistik diawali dengan dunia nyata, agar dapat memudahkan siswa dalam belajar matematika, kemudian siswa dengan bantuan guru diberikan kesempatan untuk menemukan sendiri konsep-konsep matematika. Setelah itu, diaplikasikan dalam masalah sehari-hari atau dalam bidang lain.


2.4 Kaitan Antara Pembelajaran Matematik Realistik dengan Pengertian
Kalau kita perhatikan para guru dalam mengajarkan matematika senantiasa terlontar kata “bagaimana, apa mengerti?” siswa pun buru-buru menjawab mengerti. Siswa sering mengeluh, seperti berikut,”pak…pada saat di kelas saya mengerti penjelasan bapak,tetapi begitu sampai dirumah saya lupa,”atau” pak…pada saat dikelas saya mengerti contoh yang bapak berikan, tetapi saya tidak bisa menyelesaikan soal-soal latihan”.

Apa yang dialami oleh siswa pada ilustrasi diatas menunjukkan bahwa siswa belum mengerti atau belum mempunyai pengetahuan konseptual. Siswa yang mengerti konsep dapat menemukan kembali konsep yang mereka lupakan.

Mitzell(1982) mengatakan bahwa, hasil belajar siswa secara langsung dipengaruhi oleh pengalaman siswa dan faktor internal. Pengalaman belajar siswa dipengaruhi oleh unjuk kerja guru. Bila siswa dalam belajarnya bermakna atau terjadi kaitan antara informasi baru dengan jaringan representasi, maka siswa akan mendapatkan suatu pengertian. Mengembangkan pengertian merupakan tujuan pengajaran matematika. Karena tanpa pengertian orang tidak dapat mengaplikasikan prosedur, konsep, ataupun proses. Dengan kata lain, matematika dimengerti bila representasi mental adalah bagian dari jaringan representasi (Hieber dan carpenter,1992). Matematika bukan hanya dimengerti tapi harus benar-benar memahami persoalan yang sedang dihadapi. Umumnya sejak anak-anak orang telah mengenal ide matematika. Melalui pengalaman dalam kehidupan sehari-hari mereka mengembangkan ide-ide yang lebih kompleks, misalnya tentang bilangan, pola, bentuk, data, ukuran,dan sebagainya. Anak sebelum sekolah belajar ide matematika secara alamiah. Hal ini menunjukkan bahwa siswa datang kesekolah bukanlah dengan kepala “kosong” yang siap diisi dengan apa saja. Pembelajaran disekolah akan lebih bermakna bila guru mengaitkan dengan apa yang telah diketahui anak. Pengertian siswa tentang ide matematika dapat dibangun melalui sekolah, jika mereka secara aktif mengaitkan dengan pengetahuan mereka. Hanna dan yackel (NCTM,2000) mengatakan bahwa belajar dengan pengertian dapat ditingkatkan melalui interaksi kelas dan interaksi sosial dapat digunakan untuk memperkenalkan keterkaitan di antara ide-ide dan mengorganisasikan pengetahuan kembali. Dalam pembelajaran guru haruslah berinteraksi dengan siswa, agar siswa lebih mudah memahami apa yang telah diajarkan, tentunya dalam pembelajaran harus dikaitkan dengan kehidupan nyata untuk memudahkan siswa dalam belajar.
Pembelajaran matematika realistik memberikan kesempatan kepada siswa untuk menemukan kembali dan memahami konsep-konsep matematika berdasarkan pada masalah realistik yang diberikan oleh guru. Situasi realistik dalam masalah memungkinkan siswa menggunkan cara-cara informal untuk menyelesaikan masalah. Cara-cara informal siswa yang merupakan produksi siswa memegang peranan penting dalam penemuan kembali dan memahami konsep. Hal ini berarti informasi yang diberikan kepada siswa telah dikaitkan dengan skema anak. Melalui interaksi kelas keterkaitan skema anak akan menjadi lebih kuat. Dengan demikian, pembelajaran matematika realistik akan mempunyai kontribusi yang sangat tinggi dengan pengertian siswa.


Download File Ms.Word Lebih Lengkap
Enter your email address to get update from All Of Cinta.
Print PDF
Next
« Prev Post
Previous
Next Post »
Copyright © 2013. makalah dan skripsi - All Rights Reserved | Template Created by Kompi Ajaib Proudly powered by Blogger